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Integrative analysis of multiple data types can take advantage of their complementary information and therefore
may provide higher power to identify potential biomarkers that would be missed using individual data analysis.
Due to different natures of diverse data modality, data integration is challenging. Here we address the data integra-
tion problem by developing a generalized sparse model (GSM) using weighting factors to integrate multi-modality
data for biomarker selection. As an example, we applied the GSM model to a joint analysis of two types of schizo-
phrenia data sets: 759,075 SNPs and 153,594 functional magnetic resonance imaging (fMRI) voxels in 208 subjects
(92 cases/116 controls). To solve this small-sample–large-variable problem, we developed a novel sparse represen-
tation based variable selection (SRVS) algorithm, with the primary aim to identify biomarkers associated with
schizophrenia. To validate the effectiveness of the selected variables, we performed multivariate classification
followed by a ten-fold cross validation. We compared our proposed SRVS algorithm with an earlier sparse model
based variable selection algorithm for integrated analysis. In addition, we compared with the traditional statistics
method for uni-variant data analysis (Chi-squared test for SNP data and ANOVA for fMRI data). Results showed
that our proposed SRVS method can identify novel biomarkers that show stronger capability in distinguishing
schizophrenia patients from healthy controls. Moreover, better classification ratioswere achieved using biomarkers
from both types of data, suggesting the importance of integrative analysis.

© 2014 Elsevier Inc. All rights reserved.
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Fig. 1. The flowchart of our proposed variable selection for integrative analysis of two
types of data.
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Introduction

Schizophrenia has been hypothesized to arise from a number of
genetic factors and environmental effects. To date, many studies have
investigated the role of critical genes or single nucleotide polymor-
phisms (SNP) associated with schizophrenia. Many genes of great sig-
nificance have been identified as potential causal genetic makers for
schizophrenia, such as G72/G30 on chromosomes 13q, DISC1, GRIK3,
EFNA5, AKAP5 and CACNG2 (Badner and Gershon, 2002; Callicott
et al., 2005; Sutrala et al., 2008). Besides genetic studies, functionalmag-
netic resonance imaging (fMRI) is another widely used tool for the
study of schizophrenia in that it has the ability to identify both structural
and functional abnormalities in the brain regions of schizophrenia pa-
tients (Meda et al., 2008; Szycik et al., 2009). Therefore, the identifica-
tion of biomarkers from joint analysis of fMRI and SNP data is of
tremendous importance for disease diagnosis and treatment (Lin et al.,
2011; Liu et al., 2009).

In this paper we proposed a generalized sparse model (GSM) to in-
tegrate multi-modality data (e.g., SNP and fMRI data) for biomarker se-
lection. Sparse representation, particularly compressive sensing,
received a great attention in recent years (Cao et al., 2012a, 2012b;
Donoho and Elad, 2003; Gribonval and Nielsen, 2003; Kidron et al.,
2007; Tang et al., 2011; Tropp et al., 2004). For example, Kidron et al.
used sparse regression for cross-modal localizations of sound-related
region in the video (Kidron et al., 2007). We recently developed the
sparse representation-based classification algorithms for sub-typing of
leukemia from gene expression data (Tang et al., 2011), for chromo-
some image segmentation (Cao et al., 2012a) and for integrative analy-
sis of gene copy number variation and gene expression data (Cao et al.,
2012b).

Traditionally, the GSM can be solved by many existing algorithms,
such as Homotopy method (Donoho and Tsaig, 2008), orthogonal
matching pursuit (OMP) algorithm (Cai and Wang, 2011; Davis et al.,
1997; Tropp, 2004), single best replacement (SBR) algorithm (Soussen
et al., 2011), and FOCUSSmethod (Cotter et al., 2005). However, in com-
pressive sensing theory, the exact signal recovery of an s-sparse signal
typically requires a large number of samples (Davenport et al., 2011).
Here the s-sparse signal refers to a vector having at most s number of
nonzero entries. Those entries with high amplitudes correspond to the
variables to be selected (Cai and Wang, 2011). When the number of
measurements n≫m, (m is the number of samples), it will be difficult
for the exact signal recovery (Davenport et al., 2011; Hsu et al., 2009).
One most often used conditions for exact signal recovery is the restrict-
ed isometry property (RIP) (Davenport et al., 2011). However, whether
a measurement matrix satisfies the RIP condition is hard to verify in
practice. Another method is using the coherence of a matrix X (Candès
and Tao, 2006; Donoho, 2004), which is often required to be small
(e.g. O 1

s

� �
). Moreover, when amatrix X satisfies the signal recovery con-

dition, the number of signals to be recovered or variables to be selected
using those traditional sparse representation methods will generally be
equal to or less than the number of samples (Li et al., 2009). To address
this problem, Li et al. proposed a sparse representation based variable
selection method, aiming to achieve a sparse solution for the GSM
when the sample number is large (e.g., larger than the number of vari-
ables to be selected; Li et al., 2009).

In this work and in many other practical cases, the number of
samples (92 cases/116 controls) is far less than the number of variables
(i.e., 759,075 SNPs and 153,594 fMRI voxels). As a consequence, the
small coherence condition of the data matrix is hard to be satisfied
(Hsu et al., 2009), and thus directly using existing compressive sensing
methods may fail. To overcome the difficulty caused by this large-n–
small-mproblem,we proposed a novel sparse representation based var-
iable selection (SRVS) algorithm, which can select the significant vari-
ables regardless of the coherence condition of the measurement
matrix. Moreover, the proposed SRVS algorithm has been proven to
have multi-resolution properties that select variables at different
significance levels. Instead of solving the GSM directly, the proposed
SRVS algorithm solves sub-matrixes based Lp normminimization prob-
lems and generates a sparse solution for the GSM. In a preliminarywork
(Cao et al., 2012c), we studied the orthogonal matching pursuit (OMP)
based SRVS algorithm. Our preliminary results documented that, even
for small number of samples, the SRVS is capable of identifying a num-
ber of biomarkers for schizophrenia, leading to improved identification
accuracy.

Here, we extend thework by applying our proposed SRVS algorithm
to GSM with a more general penalization term (Lp(0 ≤ p ≤ 1)norms),
aiming to identify more effective joint biomarkers for schizophrenia.
Specifically, we tested and compared three models with p = 0, 0.5, 1.
For the Lp(0 ≤ p ≤ 1) based model, we proved that the proposed SRVS
method can identify significant variables at different significant levels,
and recover signals with large probability regardless of the coherence
of the measurement matrix. We also showed the convergence and ef-
fectiveness of the proposed SRVS algorithm. After that, we applied the
SRVS to the GSM model integrating 759,175 SNPs and 153,594 fMRI
voxels in 208 subjects (92 cases and 116 controls) for the identification
of biomarkers for schizophrenia. To test the predictive power of the bio-
markers or variables selected, we used the selected variables to distin-
guish schizophrenia patients from healthy controls followed by a 10-
fold cross-validation. We evaluated the three models with different pe-
nalization terms (i.e., Lp norm, p = 0, 0.5 and 1) and compared them
with the biomarker selection approach proposed by Li et al. (2009) for
integrated analysis. In addition, we compared our method with the tra-
ditional statistical methods for uni-type data analysis (i.e. Chi-squared
test for SNP data and ANOVA for fMRI data).

Materials and methods

The proposed variable selection approach includes three steps, as
shown in Fig. 1: 1.) Data combination. The GSM model is proposed to
combine two types of data. 2.) Variable selection. The SRVS algorithm
is proposed to solve the sparse linear system in GSM. 3.) Validation of
the selected variables. We employed a multi-classification approach to
test the effectiveness of the selected variables. We used cross validation
to select the optimal parameters used in the GSM.

A sparse model for data combination

The sparse representation of a signal can be modeled as

y ¼ Xδþ ϵ; ð1Þ

where y ∈ Rm × 1 is the observation vector; X ∈ Rm × n represents the
measurement matrix; and ϵ ∈ Rm × 1 is the measurement error or
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noise. The goal of sparse representation is to recover the unknown
sparse vector δ∈ Rn × 1 from y and X, and the non-zero entries of δ cor-
respond to selected variables/columns in X.

In case of representing multi-modality data (e.g. SNP data and fMRI
data from same subject groups),we propose a generalized sparsemodel
(GSM) in Eq. (2).

y ¼ α1X1;α2X2½ � δ1
δ2

� �
þ ε ¼ Xδþ ε; ð2Þ

where y∈ Rm × 1 is the observation vector (phenotypes of the subjects;
e.g., 1 for disease case; 0 for healthy control); X1∈Rm�n1 and X2∈Rm�n2

are the measurements of two different data types (e.g., numerical SNPs
values (0, 1, 2) and fMRI voxel values) with m samples, and n1 (or n2)
features in each sample; each column is normalized to have unit L2
norm; X = [α1X1, α2X2] ∈ Rm × n; α1 + α2 = 1, and α1, α2 N 0 are the
weight factors for the two types of data; ε ∈ Rm × 1 is the measurement
error. Then, the problem of variable selection becomes identifying the

unknown sparse vectorδ ¼ δ1
δ2

� �
∈Rn�1 from y and X, whereδ1∈Rn1�1,δ2

∈Rn2�1
; and n= n1+ n2. To determine optimal weighting factors α1 and

α2, cross validation can be used, i.e. the weighting factors that generates
the best classification ratio (CR).

Variable selection with SRVS

By integrating multi-modality data, the GSMmodel given by Eq. (2)
offers the potential to detect more significant and reliable biomarkers
(Cao et al., 2012d; Liu et al., 2009; Rhodes and Chinnaiyan, 2005). How-
ever, in genomic and bio-imagingdata analysis (e.g. SNP and fMRI), usu-
ally n≫m and the linear systemdefined by Eq. (2) is underdetermined,
and the solution of the system is not unique. To overcome the problem,
a sparse constraint is usually imposed on the model. An example is
given in Eq. (3) by using the L0 norm based penalty (Cai and Wang,
2011; Davis et al., 1997; Soussen et al., 2011; Tropp, 2004), whichmea-
sures the number of nonzero elements.

min δk k0subject to y−Xδk k2≤ε: ð3Þ

But it is unfortunate that this penalty results in a combinatorial prob-
lem with NP-hard complexity. Thus, L1 norm penalty (Donoho and
Tsaig, 2008) is introduced instead:

min δk k1subject to y−Xδk k2≤ε: ð4Þ

Detailed discussions on the differences between L0 and L1 normpen-
alties can be found in Sharon et al. (2007) and Donoho et al. (2006). In
recent years, Lp norm penalty (0 b p b 1) was also studied (Cotter
et al., 2005; Xu et al., 2012), which can lead to a more sparse solution.
The model is formulated as

min δk kpsubject to y−Xδk k2≤ε: ð5Þ

Several algorithms (Cotter et al., 2005; Foucart and Lai, 2009; Wang
et al., 2011) have been proposed.

Nevertheless, when applying model (5) to signal recovery/variable
selection, themeasurementmatrix X∈ Rm × n is usually required to sat-
isfy the RIP condition for exact signal recovery (Candès and Tao, 2006;
Davenport et al., 2011; Donoho, 2004; Hsu et al., 2009). The RIP is de-
fined as follows.

Amatrix X∈ Rm × n is said to satisfy the restricted isometry property
(RIP) of order s if there exists a τs ∈ (0, 1) such that

1−τsð Þ δk k22≤ Xδk k22≤ 1þ τsð Þ δk k22 ð6Þ

holds for all s-sparse vector δ ∈ Rn.
When amatrixX∈Rm × n satisfies the RIP of order s, the s-sparse vec-
tor δ ∈ RN can be recovered from the m samples. One necessary condi-
tion for X ∈ Rm × n to satisfy RIP is that m and n satisfy Eq. (7)
(Davenport et al., 2011).

Theorem. If X ∈ Rm × n satisfies an RIP of order 2s with ε2s∈ 0; 12
� �

, then

m≥cs log
n
s

� �
; ð7Þ

where c ¼ 1
2 log

ffiffiffiffi
24

p
þ1ð Þ≈0:28 (Davenport et al., 2011). Thus for a data

samplewith the number ofm, the following condition has to be satisfied

n≤sem=cs ð8Þ

for exact recovery of s-sparse vector δ ∈ RN. In genomic or medical im-
aging data analysis, we can assumem≤ s, i.e., the number of biomarkers
to be detected is generally larger than the number of samplem (Li et al.,
2004, 2009). Then Eq. (8) can be simplified as

n≤me1=c≈35m: ð9Þ

Eq. (9) suggests that, for a given sample size m, the number of n in
the measurements matrix X ∈ Rm × n should be less than 35m so that
the sparse solution can be obtained.

However, in practice, this condition cannot be satisfied, because the
number of features (SNPs/fMRI voxels) is often greatly larger than that
of the sample.

Eq. (9) describes a necessary condition for amatrix X∈ Rm × n to sat-
isfy signal recovery requirement. Since it's difficult to verify if amatrix X
∈ Rm × n satisfies the RIP, the coherence of X is used instead (Donoho,
2004). The coherence μ(X) is defined as:

μ Xð Þ ¼ max1≤ ib j≤n XTX
� �

i; j










=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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� �
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r

: ð10Þ

The coherence given by Eq. (10) is always within the following range:

μ Xð Þ∈
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n−m

m n−1ð Þ
q

;1
� �

; the lower bound is known as the Welch bound

(Davenport et al., 2011). Some reconstruction algorithms require a strong
condition of bounded coherence (Donoho, 2004; Hsu et al., 2009):

μ Xð Þ≤O
1
s

� �
: ð11Þ

However, this small coherence condition is hard to be satisfied by our
problem. In fact,whenn≫m, it is inevitable for some columnswithin the
small-m–large-nmeasurementmatrix to have big coherence (Candès and
Tao, 2006). In our study, n = 759,075 + 153,594 (SNPs + fMRI voxels)
and m= 208 (92 cases/116 controls). Therefore, we proposed the SRVS
algorithm to find an approximate solution of the GSM model given by
Eq. (2). The SRVS algorithm is described as follows, and its properties
are presented in Appendix A.

SRVS Algorithm http://hongbaocao.weebly.com/software-for-
download.html

1. Initialize δ(0) = 0;
2. For Step l, randomly choose k columns from X= {x1, . . . , xn}∈Rm × n

to construct am× k sub-matrix denoted as Xl∈Rm × k, and denote the
index vector of the selected columns as Il∈{1, 2, 3…};

3. Given the sub-matrix Xl, solve the following Lpminimization problem
to get the optimal sparse solution δl∈Rk × 1

min δlk kpsubject to y−Xlδlk k2≤ε; ð12Þ

4. Update δ(l)∈Rn × 1 with δl: δ(l)(Il) = δ(l − 1)(Il) + δl; where δ(l)(Il) and
δ(l − 1)(Il) denote the Il th entries in δ(l) and δ(l − 1), respectively;

http://hongbaocao.weebly.com/software-for-download.html
http://hongbaocao.weebly.com/software-for-download.html
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5. If a stopping rule is not satisfied, update l = l + 1 and go to Step 2.
Otherwise, set δ = δ(l)/l and break. The non-zero entries in δ corre-
spond to the column vectors selected, i.e., variable selection.

In Step 2, one way to achieve random selection of k columns from X
is to shuffle the data with the Fisher–Yates algorithm (Fisher and Yates,
1948), and then use a window of length k to select variables randomly
(Cao et al., 2012c). It should be noted that in each iteration, a different

sub-matrix Xlwill be randomly selected (totally n
k

� �
possible combina-

tions), which is not a simple split of the X into several sub-sets.
In Step 3, there aremanywell-establishedmethods for solving the Lp

minimization problem, such as the Homotopy algorithm (Donoho and
Tsaig, 2008) for p = 1, orthogonal matching pursuit (OMP) algorithm
(Cai andWang, 2011; Davis et al., 1997; Tropp, 2004) and single best re-
placement (SBR) algorithm (Soussen et al., 2011) for p = 0 and the
FOCUSS method for 0 ≤ p ≤ 1 (Cotter et al., 2005).

In Step 5, we set the following two stop rules: 1.) ‖δ(l)/l− δ(l − 1)/
(l − 1)‖2 b α, where α is a predefined threshold; 2.) The probability
that each pair of column vectors in X has been compared should be
greater than 1-pstop. The algorithm terminates when both rules are sat-
isfied, which decides the total number of iterations. In this work, we set
α=0.01 and pstop=1e−4. At those stop rules, the total number of iter-
ations was around 200 for the simulation data with n = 1e−6 features
and 300 for the real data sets (759,075 SNPs and 153,594 fMRI voxels)
tested in this work. The effect of stop rules on the number of iterations
will be evaluated in Sec. B of Appendix A, where the convergence of the
algorithm is also proved.

We present the discussion and proof of the properties of the pro-
posed SRVS algorithm in Appendix A, including: 1.) The independence
on coherence condition of the datamatrix X; 2.) Convergence and effec-
tiveness of SRVS; 3.) Multi-resolution property of SRVS; and 4.) Sparsity
control using ε. The Matlab based software toolbox for the proposed
SRVS algorithm is available online: http://hongbaocao.weebly.com/
software-for-download.html.

Validation of selected variables

To test the detective power of the selected biomarkers (SNPs/
fMRI voxels), we performed a multivariate classification followed
by a ten-fold cross-validation to classify schizophrenia patients
from health controls. Results from four models were compared:
SRVS algorithm with different Lp norm penalties (p = 0, 0.5, 1) and
Li et al.'s method (Li et al., 2009).

Furthermore, we compared several classifiers, including sparse
representation-based classifier (SRC), fuzzy c-means (FCM) classifier,
and support vector machine (SVM) based classifier, and the SRC gives
the best performance (see Appendix B, Fig. B.1.). The SRC has been prov-
en effective formany tasks such as face recognition (Wright et al., 2009),
speech recognition (Gemmeke et al., 2011), signal classification for
brain computer interface (Shin et al., 2012), and image classification
(Cao et al., 2012a). We provide the results in Appendix B, Fig. B.1.
Here, we describe the SRC algorithm as follows.

Sparse Representation-based Classification (SRC) algorithm:

1. Inputs: a matrix of training samples A= [A1, A2, …, Ac] ∈ Rn × s for c
classes; and a test sample st ∈ Rn.

2. Normalize the columns of A to have unit L2-norm;
3. Solve the L1 norm minimization problem: x ̂ ¼ argminx1; subject to

Ax= sj;
4. Calculate the residuals ri(st) = st − Aδi(x)2 for i = 1, …, c;
5. ClassID stð Þ ¼ arg min

i
ri stð Þ:

The inputs of the SRC algorithm include 1. st ∈ Rn, the feature vector
from the subject t; 2. A∈ Rnxs, feature vectors from c=2 cluster groups
in a total of s samples/subjects; δi(*) is a Rs → Rs transformation
function, which selects the coefficients associated with the i-th class.
The output is the ClassID of the subject t.

In each run of the 10-fold cross-validation, 90% subjects from both
cases and controls were randomly selected for variable/biomarker se-
lection, while the rest were used for testing. For each method, we car-
ried out 100 runs and the average of the classification ratios was used
as the final identification accuracy.

We also used the cross-validation to determine the optimalweighting
factors in Eq. (2). For different pairs of weighting factors, different vari-
able groups will be selected, resulting in different classification ratios.
Therefore, using the cross validation stated above, we can select the
best weighting factors that lead to the highest classification ratio.

To test the effectiveness of integrative analysis, we compared our
method with two traditional statistical methods for uni-type data anal-
ysis (i.e. Chi-squared test for SNP data and ANOVA for fMRI data). We
provide the top 200 selected SNPs and fMRI voxels and the classification
ratios in Appendix C and Appendix D, respectively.

Results

This section is organized as follows. We first describe in the Data
collection section the data we tested. Then we present in the Variable
selection with generalized sparse model section the variables (SNPs/
fMRI voxels) selected using GSM with different weighting factors.
After that we compare in the Comparison of the variables selected
using different methods section the variables selected with different
models (SRVS with three different penalties, Li et al.'s method). Finally,
in the Cross validation for the selection of weighting factor section, we
provide the cross validation results for the selection of weighting
factors.

Data c=ollection

In this study, participant recruitment and data collection were con-
ducted by the Mind Clinical Imaging Consortium (MCIC). Two types of
data (SNP and fMRI) were collected from 208 subjects including 96
schizophrenia patients (age: 34 ± 1, 22 females) and 112 healthy con-
trols (age: 32 ± 1, 44 females). All of them provided written informed
consents. Healthy participants were free of any medical, neurological
or psychiatric illnesses and had no history of substance abuse. By the
clinical interview of patients for DSM IV-TR Disorders (Kumari et al.,
2012; Pascual-Leone et al., 2002) or the comprehensive assessment of
symptoms and history, patients met criteria for DSM-IV-TR schizophre-
nia (Meier et al., 2008; Onitsuka et al., 2004). Antipsychotic history was
collected as part of the psychiatric assessment.

fMRI data collecting and preprocessing
The fMRI data were collected during a sensorimotor task, a block-

design motor response to auditory stimulation. During the on-block,
200 ms tones presented a 500 ms stimulus onset asynchrony (SOA). A
total of 16 different toneswere presented in each on-block,with frequen-
cy ranging from 236 Hz to 1318 Hz. The fMRI images were acquired on
Siemens 3 T Trio Scanners and a 1.5 T Sonata with echo-planar imaging
(EPI) sequences using the following parameters (TR = 2000 ms, TE =
30 ms (3.0 T)/40 ms (1.5 T), field of view = 22 cm, slice thickness =
4 mm, 1 mm skip, 27 slices, acquisition matrix = 64 × 64, flip angle =
90°.) Four scanners were used and we have roughly equal numbers of
patients and controls at all sites. Data were pre-processed in SPM5
(http://www.fil.ion.ucl.ac.uk/spm) and were realigned, spatially normal-
ized and re-sliced to 3 × 3 × 3mm3, smoothed with a 10 × 10 × 10mm3

Gaussian kernel to reduce spatial noise, and analyzed bymultiple regres-
sion considering the stimulus and their temporal derivatives plus an in-
tercept term as repressors. Finally the stimulus-on versus stimulus-off
contrast images were extracted with 53 × 63 × 46 voxels and all of the
voxels with missing measurements were excluded.

http://hongbaocao.weebly.com/software-for-download.html
http://hongbaocao.weebly.com/software-for-download.html
http://www.fil.ion.ucl.ac.uk/spm
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SNPs data
A blood sample was obtained from each participant and DNA was

extracted. Genotyping for all participants was performed at the Mind
Research Network using the Illumina Infinium HumanOmni1-Quad
assay covering 1,140,419 SNP loci. Bead Studio was used to make the
final genotype calls. Next, the PLINK software package (http://pngu.
mgh.harvard.edu/~purcell/plink) was used to perform a series of stan-
dard quality control procedures, resulting in the final dataset spanning
759,075 SNP loci. Each SNP was categorized into three clusters based
on their genotype and was represented with discrete numbers: 0 for
‘BB’ (no minor allele), 1 for ‘AB’ (one minor allele) and 2 for ‘AA’ (two
minor alleles).

Variable selection with generalized sparse model

Based on the generalized sparsemodel (Eq. (2)),we applied the pro-
posed SRVS algorithm to select biomarkers for schizophrenia from the
combination of two data sets (SNP data and fMRI data), where the
weight factors α1 and α2 (α1 + α2 = 1) reflect the level of contribution
from SNP and fMRI data set respectively. When the weight factor α1 =
1 or α2 = 1, the variable selection is performed only on one type of
data. We tested the range of α1 from 0.3 to 0.6, and used a step length
of 0.02 with a total of 16 different trials and we set k = 0.05n. To test
the most important biomarkers, we selected 200 biomarkers in each
trial by using our proposed SRVSmethod in threemodels with different
Lp norms (p = 0, 0.5, 1). We also compared with Li et al.'s method (Li
et al., 2009). Fig. 2 shows the plot of the number of SNPs and fMRI voxels
Fig. 2. Variable selection with generalized sparse model using different models, where the num
The ‘weight factor’ in the plots refers to the weight factorα1 (for SNP data set), and theweight f
with L0 norms; (c) SRVS method with L1 norms; (d) Li et. al's SLR method.
selected against weight factor α1 for these four models. As shown in
Fig. 2, the weight factor has similar effects on the variables selected
with the four models. It was interesting to see that even though the
number of SNPs was much larger than that of fMRI voxels (759,075 vs.
153,594), similar number of variables was selected from both data
sets when weight factor α1 was around 0.4 (0.38 for SRVS method
with L1/2 norms, 0.46 for SRVS method with L0 norms, 0.47 for SRVS
method with L1 norms, and 0.47 for Li et al.'s method).

In addition, from Fig. 2we can see thatwhenα1 took a smaller value,
only a few SNPs were selected. Those SNPs can be viewed as the most
important biomarkers since they were identified in both two data sets
consisting of SNPs with small weight. When α1 took a large value (α2

was small), only a few fMRI voxels were selected. For the same reason,
these voxels should be the most important ones. To further understand
the relationships between the groups of variables selected in each trail,
we analyzed the newly selected variables with the decrease of the cor-
responding weight factor, as shown in Fig. 3.

In Fig. 3, the newly selected variables shown in each trial have no
overlap with variables from any other trials. When the weight factors
have larger values (0.6 for SNP data set and 0.7 for fMRI data set), the se-
lected groups have relatively larger size, and the variables were mostly
from one type of data. Those were the variables that can be identified
when using one type of data alone for the analysis. With the decrease
of the weight factor, fewer new variables were detected. However,
those variables should not be viewed as less significant than those se-
lected with bigger weight factors, since they were selected over vari-
ables from both types of data with smaller weights.
ber of selected fMRI voxels is in red color and the number of selected SNPs is in blue color.
actorα2= 1−α1 (for fMRI data set). (a) SRVSmethodwith L1/2 norms; (b) SRVSmethod

http://pngu.mgh.harvard.edu/~purcell/plink
http://pngu.mgh.harvard.edu/~purcell/plink


Fig. 3.The newly selected variables in each trial with the decrease of the correspondingweight factor. The ‘weight factor’ in the plots refers to the weight factorα1, and the weight
factor α2 = 1 − α1. (a) SRVS method with L1/2 norms; (b) SRVS method with L0 norms; (c) SRVS method with L1 norms; (d) Li et al's SLR method.
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Comparison of the variables selected using different methods

We further compared the selected variables (SNPs/fMRI voxels)
using different methods: SRVS with (L0, L1, L1/2) and Li et al.'s method,
as shown in Table 1. For the 16 trials with 200 variables selected in
each trial, there were totally 3200 variables. However, as shown in
Fig. 3, only a few of new variables were selected in each run, resulting
in less number of final selected variables (807, 888, 1092 and 1939 for
the fourmodels, respectively). The overlaps among the selected variable
groups using SRVS models with different Lp norm penalties are around
50% (458, 447 and 514 as shown in Table 1 and Fig. 4). Totally 349 var-
iables are selected by all those three models. When compared with Li
et al.'s method, only a small percentage (b10%) overlapped with those
Table 1
The comparison of the variable numbers (SNPs/fMRI voxels) selected by the four Models:
SRVS with (L0, L1, L1/2) and Li et al.'s method.

SRVS
(L1/2)

SRVS
(L0)

SRVS
(L1)

Li et al.'s
method

Three SRVS
methods

SRVS (L1/2) 807 458 447 67 349
SRVS (L0) / 888 514 87
SRVS (L1) / / 1092 79
Li et al's method / / / 1939 /
All four methods 48
of the SRVSmodelswith different Lp norms (67, 87 and 79 respectively).
There were totally 48 variables selected by all the four models. We pro-
vided the first 50 SNPs and the corresponding genes identified by the
four method in Table A.1.

We also compared our selected geneswith the top ranked 45 schizo-
phrenia genes reported in (http://www.szgene.org/default.asp) (see
Table A.2). We selected 200 variables in each trial and identified 4 to 5
reported genes by using our proposed SRVS methods with L0 and L1
Fig. 4.Comparison of the selected variables (SNPs/fMRI voxels) using a Venn diagram.
A, B and C are the variables selected using SRVS with L1/2, L0 and L1 norm penalties,
respectively.

http://www.szgene.org/default.asp
image of Fig.�3
image of Fig.�4


226 H. Cao et al. / NeuroImage 102 (2014) 220–228
norm penalties, and by using Li et al.'s method, as shown in Table 2. Our
proposed SRVS algorithmwith L1/2 norm identified 6 reported genes. The
genes/SNPs identified by each model were different. It should be noted
that even though the OPCML gene was identified by all the four models,
the corresponding SNPs, according to which the gene was identified,
were different. If we select more variables in each run, corresponding to
larger s-sparsity, more significant variables can be selected. This has
been reported in our previous work, in which we selected around 800
variables in each of the 16 trials (α1 is from 0.3 to 0.6; step length =
0.02), and 20 reported genes (e.g. PRSS16, NOTCH4, PDE4B, TCF4) (Cao
et al., 2012c).

We also compared the fMRI voxels selected by our proposed SRVS
method with those of using Li et al.'s method (Li et al., 2009), as
shown in Fig. 5. It is evident that the voxels selected by the SRVSmethod
tended to cluster together at specific regions such as temporal lobe, lat-
eral frontal lobe, occipital lobe, andmotor cortex, which are schizophre-
nia related brain regions (Kumari et al., 2012; Onitsuka et al., 2004;
Pascual-Leone et al., 2002). However, the voxels selected by Li et al.'s
method tend to be small regions scattered over the whole brain. This
may be due to the fact that the voxels within the same brain region
may not be simultaneously detected using their method.

The above comparisons show big differences among the biomarkers
selected using the four models. To compare and the test the effective-
ness of those different groups of biomarkers, they were used for the
classification of schizophrenia patients fromnormal controls and the re-
sultswere provided in the Cross validation for the selection ofweighting
factor section.
Cross validation for the selection of weighting factor

We used the SRC as a classifier in classification with a ten-fold cross
validation to test the predictive power of the variables/biomarkers se-
lected in the fourmodels (SRVS with L0.5 penalty; SRVS with L0 penalty;
SRVS with L1 penalty; and Li et al.'s method). We also used cross-
validation to select the best weighting factors for the GSM (i.e., the
weighting factors corresponding to the highest classification accuracy).
Fig. 6(a) shows the results of the ten-fold cross validation for the 16 tri-
als given in Fig. 2. It can be seen from Fig. 6(b) that our proposed SRVS
methods in all three models with different Lp norm penalties provide
much higher classification ratios than that of Li et al.'s method (Li
et al., 2009) (p ‐ value b 1e−8). In addition, the SRVS method with the
L1/2 norm penalty gives the highest classification ratio among four test-
ed models. This is consistent with the fact that, the L1/2 norm based
sparse models provide the best data fitting and visual modeling
among all the Lp norms (p ∈ (0, 1]) as demonstrated by Xu et al.'s
work (Xu et al., 2012).

The cross validation results determined that, for the fourmodels test-
ed, the best weighting factors are: 1.) SRVS with L1/2 penalty, α1 = 0.58,
CR = 89.7%; 2.) SRVS with L0 penalty, α1 = 0.48, CR = 81.5%; 3.) SRVS
with L1 penalty, α1 = 0.38, CR = 82.1%; and 4.) Li et al.'s method,
α1 = 0.46, CR = 62.1%. It should be noted that the best CRs and the
corresponding optimum weighting factors were achieved with bio-
markers selected from both types of data.
Table 2
The comparison with the reported first 45 Schizophrenia genes (http://www.szgene.org/defau

SRVS (L0) SRVS (L1/2)

Genes SNPs Genes SNPs

PDE4B rs10846559 DRD2 rs10800893
NRG1 rs12097254 NRG1 rs16956192
PLXNA2 rs4811326 RGS4 rs1293448
OPCML rs3026883 PPP3CC rs6637088
/ / PLXNA2 rs4072729
/ / OPCML rs11772714
When compared with the traditional statistics method for uni-type
data analysis (Chi-squared test for SNP data and ANOVA for fMRI
data), results showed that using selected top (200–1000) SNPs alone
can reach identification accuracy of (83.11 ± 1.32)%, while using top
(200–1000) fMRI voxels alone the accuracywas (63.13± 0.74)%. Please
refer to Appendices C and D for the selected top features and the classi-
fication results.

Discussion and conclusion

This work aimed at biomarker identification using multi-modality
data, i.e., SNP and fMRI data. To achieve this goal, we proposed general-
ized sparse model (GSM) solved by a novel SRVS algorithm. The select-
ed biomarkers were then tested by applying to the classification of
schizophrenia patients with a ten-fold cross validation.

The GSM given in Eq. (2) uses multi-modality data for integrative
analysis to detect biomarkers that cannot be identified using one type
of data alone. The two weighting factors in GSM represent the level of
contribution from different data types, and the best values can be deter-
mined by cross-validation. As shown in the Cross validation for the
selection of weighting factor section, the best weighting factors for all
the four models are between [0.38, 0.58];using the combination of
both data sets at these values can lead to highest classification ratios.
This demonstrates the advantage of integrating multi-modality data
for the diagnosis of schizophrenia. In addition, when compared to the
uni-type data analysis, our proposed SRVS method with L1/2 norm led
to significantly higher identification accuracy (p-value b 0.001) than
that from using one type of biomarkers alone (i.e., only using SNP or
fMRI data for classification). This further demonstrates the advantage
of using multiple data modalities.

The ten-fold validation results showed that features selected using
our proposed SRVS algorithm gave higher classification accuracy than
that of Li et al.'s method (see Fig. 6(b), p-value b 1e−8), indicating its ef-
fectiveness when the sample numbers are much smaller than the num-
ber of variables. The comparison results indicate that, even though Li's
method is valid for data of large sample size, our proposed SRVS is
more suitable for processing data of small sample size.

For the data set of small-m–large-n, traditional sparse model may
fail. By randomly sampling the columns of the original measurement
matrix into smaller sub-matrixes, however, our proposed SRVSmethod
can overcome the difficulty. We proved that, a significant variable from
the original data set can be selected with high probability, regardless of
the coherence conditions (Appendix A, Sec. A). Moreover, we showed
the convergence and effectiveness of the proposed SRVS method in
Appendix A, Sec. B. As shown in Fig. 6(a), voxels from the same clusters
were identified simultaneously. Those variables may not be recovered
with the traditional sparse models (e.g., the method used by Li et al.
(2009)).

One advantage of our proposed SRVS algorithm is its multi-
resolution properties. We showed in Appendix A, Sec. C that variables
selected using larger window length k will be subset of those selected
with smaller k. When k = n, the model reduces to traditional sparse
model as given by Eq. (5), and nomore thanm biomarkers can be iden-
tified (Cai and Wang, 2011; Li et al., 2009). When using two different
lt.asp).

SRVS (L1) Li's method

Genes SNPs Genes SNPs

HIST1H2BJ rs11220916 PRSS16 rs13399561
DRD2 rs16828456 DAOA rs16869700
NRG1 rs10846559 RPP21 rs1836942
PLXNA2 rs4632116 NRG1 rs10833482
OPCML rs11807403 OPCML rs1745939
/ / / /

http://www.szgene.org/default.asp


Fig. 5. A comparison of the selected fMRI voxels between SRVS (L1/2) and Li et al.'s method (Li et al., 2009). The value of a voxel represents the frequency that it has been selected in the 16
trials. (a) SRVS (L1/2); (b) Li et al's method.
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parameters k1 N k2, a larger group of variables will be selected by using
k2, which include the variables selected using k1. Thus, as long as the pa-
rameter n N k N m (e.g., k = 0.05n), the same top (n/k) × m variables
will always be selected. We provided the discussion of the relationship
of window length k and the number of variables to be selected in
Appendix A, Sec. D. In addition, those variables can be ranked in the
order of their significance (i.e., the amplitudes of the corresponding en-
tries in the solution δ; Cai and Wang, 2011; see Appendix A, Fig. A 3).
Then the residual ε can be used to determine how many variables
should be selected (i.e., sparsity control; see Appendix A, Sec. E.).

Ourmultivariate classification results show that the variables select-
ed by using our proposed SRVS algorithm, especially with L1/2 norm
based penalty, generated highest classification accuracy in discriminat-
ing schizophrenia patients from healthy controls. This suggests that L1/2
normmaybe thebest choice as penalization term for theproposed SRVS
method. However, the multivariate classification approach is not an
extra validation step, but rather a way to determine how predictive
the selected variables are as selected by the SRVS approach. For those
variables that are not reported by the previous studies, further valida-
tion approaches should be conducted to test their significance. More-
over, the SRVS method proposed in this work is a data driven method,
which do not directly interpret the physiological meaning of the select-
ed variables. It was suggested by Haufe et al.'s work that signals
Fig. 6.A comparison of classification results of using four sparsemodels. Panel (a) gives the class
different weight factors; panel (b) is the box plot generated with ANOVA analysis of the classifi
detected using general linear model may involve noise (Haufe et al.,
2014). Therefore, those variables that are not reported by the previous
studies may need further validation approaches using independent
data sets to test their physiological significance.

In summary, we presented an effective multi-modality data integra-
tion method for biomarker selection. Using the method, we are able to
integrate different types of data with large number of variables but
small number of samples. However, due to the limited sample size, fur-
ther biological experimental work is needed to validate the biomarkers
identified in the paper.
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